

Emergent Personalized Content in Video Games

Simone Guggiari April 17th, 2019

Prof. Dr. Robert W. Sumner Dr. Fabio Zünd Henry Raymond

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

TOWARDS PERSONALIZATION

Data collection

- o Amazon
- o Netflix
- Google (e.g. maps, youtube)
- Steam ("your" store)

• Uses

- Predict purchases
- Increase time on platform
- o Sell data
- Enhance service

Content personalization

• Improve experience

VISION

• Video games

- o interactive by nature
- designers shape it

• Use data

- infer models
- improve experience

• Adaptation

- Dynamic change at runtime
- Learn preference
- Players influence
- o Tailored

• Examples

- o RTS
- Action-adventure
- o FPS

PROBLEM STATEMENT

Develop an algorithm embedded in a video game that adapts to the users by collecting information about their playstyle and uses this information to generate procedural, personalized levels.

PRESENTATION OVERVIEW

RELATED WORK

ALGORITHM

- Research
- Commercial

- Player Encoding
- Content Generation
- Adaptation

RELATED WORK

LEFT 4 DEAD

- Goal: generate dramatic game pacing O Al Director
- Modulate action spikes
 - Too frequent = exhausting
 - Too seldom = boring

• Stress coefficient representation

0 1D value

• Gameplay phases

- Build up
- o Sustain peak
- Peak fade
- o Relax

Advantages

- Dynamic, personalized gameplay
- Captivating, flow \bigcirc

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

INFINITE MARIO BROS

• Shaker, Yannakakis, Togelius (2010)

- Super Mario clone
- Procedural levels
- Adapt metrics
- Maximize emotional state

• Machine learning

- Multi-layer perceptron
- Maximize fun
 - Ask rating

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Level metrics

PERSONALIZATION ALGORITHM

OVERVIEW $X \to P \to W \to L \to S$

- **Recorded metrics** $x_{i,j} \in X$
- Player encoding
- Coefficients
- Level
- Satisfaction

 $x_{i,j} \in X$ $w_j \in W$ $l_j \in L$ $s_j \in \mathbb{N}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Player model
- Adaptation function
- Generative algorithm
- Rating function

 $\mathcal{C}: X \to P$ $\mathcal{F}: P \to W$ $WFC: W \to L$ $\mathcal{R}: L \to S$

1 - PLAYER MODEL

BARTLE'S TAXONOMY

Social		
Simulation	chatting story roleplay cooperation pets craft/build adventure puzzle	BE
internal, deep, theoretic		KNOW (understand)
Adventure Turn-based strategy Platformer	creation strategy hidden secrets exploration	Explorer Interacting-with World

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Music

Simone Guggiari - Master Thesis Final Presentation - April 2019

PLAYERS dynamic, freedom

Action Survival action RTS tool use Killer vehicles Acting-on Players speed physics fight DO (power) external, practical HAVE ACTING (security) MMORPG RPG competition collection highscores Achiever grind Acting-on World items loot

FPS

WORLD static, rules

GAMES AS NEEDS SATISFACTION

Maslow's Hierarchy

Selfactualization: achieving one's full potential, including creative activities Self-fulfillment

needs

Esteem needs: prestige and feeling of accomplishment

Belongingness and love needs: intimate relationships, friends

> Safety needs: security, safety

Physiological needs: food, water, warmth, rest

Kille

Expl

Soci

Achi

_ Basic _ needs

Psychological

needs

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

er			
loror			
IULEI			
ializer			
Ianzei			
iever			
IIC V CI			

OUR MODEL

Multi-dimensional vector

- Degree of membership
- o Extendible
- Not mutually exclusive

• Normal distribution

- o Assumption
- Extendible
- Underlying game design
- No direct mapping
- Player agency
- Deviation expressiveness

 σ

 μ

$$x_{i,j} = (k, a, e, s) \qquad X_i \subseteq X$$

$$p_i = (\{-c, \frac{\mu_i - \mu}{\sigma}, c\} + c)/2c$$

2 - CONTENT GENERATOR

CONTENT GENERATOR

Procedural:

- Infinite content
- o Cheap
- o Adaptable

• Constraints:

- o General
- o Varied
- o Controllable
- o Fast

Wave Function Collapse

WAVE FUNCTION COLLAPSE (WFC)

• General-purpose content generator

- Maxim Gumin (2016)
- Quantum mechanics
- Bitmap generation
- Wave, collapse
- Constraint satisfaction model

• Locally similar bitmaps:

- C1: NxN patches found in input
- C2 (weak): distribution should be similar

APPLICABLE TO 3D

Embed mesh in cube

Any tileable level

- Distribution

OUR GENERATIVE ALGORITHM

TILESETS

• General

- <u>Any</u>tileable level
- No code change

• Input

- o Tileset
 - o Distribution

Hash

- Automatic
- Boundary constraints
- Designer friendly

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

GENERATION RESULTS

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

GENERATION RESULTS

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3-ADAPTATION

FIND OPTIMAL COEFFICIENTS

• Optimal parameters

• Maximize enjoyment • Leverage other players' data

Assumption

• Similar players • Behavior to distinguish

• Influence

- Similar players
- Higher enjoyment

• Search strategy

- Gradient
- Step (rating dependent)

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 $w^* = \operatorname{argmax}_{w \in W}(\mathcal{R}(p_i, w)) = \mathcal{F}(p_i)$

 $w_1 = \frac{1}{norm} \sum_{p_j \in N(p_i)} \delta(p_i, p_j) \cdot r(w(p_j)) \cdot w(p_j)$

$$w_{j+1} = w_j + \eta \cdot \Delta$$

FRAMEWORK

• General

- Applicable to most
- Action-adventure
- o 3rd person avatar, top down

Movement

- o Run
- o Sneak
- o Vault

• Equipment

- o Guns
- o Melee
- o Grenades

Enemy Al

- o Patrol
- o Chase
- o Attack

FINAL GAME

• Gianni

- Garbage collector
- City of Cleanolandia
- Defeat angry raccoons

• Score

- Fighting
- o Looting
- Exploring

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

GAMEPLAY

RESULTS

EXECUTION

• 3 studies

- First game, correlation
- Second balancing
- Last personalization

• Goal

- Answer thesis
- Does personalization algorithm increase experience enjoyment

• Execution

- Questionnaire
- o Gameplay
- o Treatments
- o Rating

FINAL STUDY

• Participants:

- o 96 users
- o 570 rounds
- o 40 h gameplay

Questionnaire results

- Explorer
- Possible reasons
- Play frequency \bigcirc

Bartle's Taxonomy Results

Killer

Explorer

Socializer

RATING RESULTS

• Two treatments:

- o personalization on
- o off = users' pool

• Fit distribution

O increase 0.6113 stars

• T-test

o p-value = 0.0078 << 0.05

• ANOVA

O F-value (ratio) = 7.33

Mann-Whitney U-test

- less assumptions (no continuous, normal distr.)
- independence only (i/d variables)
- o p-value = 0.0058

 distribution
 μ
 σ

 off
 6.1441
 2.3954

 on
 6.7554
 2.2422

ETH

INSIGHTS

• Correlation

- O Level-score
- Level-actions
- Exploration-rating
- O Score vs enjoyment

• Drawbacks

- O Unbalanced game
- Simple model
- Too many variables
- Focus on one research question
- Recruitment
- No accounting for noise

CONCLUSION

• Future work

- Expanded player models
- More complex mappings
- Generation of other content

• Special thanks

- o Bob
- o Fabio
- o Henry

THANK YOU! Questions?

